Lycée de Khniss Prof : M^{me} Bakir Classe: 4 éme Maths Date: 8/2/12

DEVOIR DE CONTROLE N° 2

Durée 2 h

EXERCICE N°1: (4 pts)

Répondre par Vrai ou Faux en justifiant la réponse.

1) Une similitude directe qui fixe deux points distincts du plan est l'identité.

2) Si
$$f = S_A \circ S_d (A, 3, \frac{\pi}{2})$$
 alors $f = S_d (A, 3, -\frac{\pi}{2})$.

3) Si f = h(A,-2) o R(A,
$$\frac{\pi}{3}$$
) alors f = S_d (A, 2, $-\frac{2\pi}{3}$).

4) Le plan est rapporté à un repére orthonormé direct (O,\vec{l},\vec{j}). Soit f une application du plan dans lui-même d'écriture complexe z' = $\frac{1-i}{2}$ z - 5.

Alors f o g est une symétrie glissante.

EXERCICE N° 2: (5 pts)

On a représenté ci-dessous deux courbes représentatives (C_1) et (C_2) d'une fonction f et d'une primitive de f définies sur IR.

- 1) Justifier que (C_2) est celle de la fonction f.
- 2) Calculer la valeur moyenne de f sur [0, 1].
- 3) Calculer l'aire de la partie du plan limitée par (C_2) l'axe des abscisses et les droites d'équation respectives x = 0 et x = 2.
- 4) Soit la fonction G définie sur IR par $G(x) = \int_0^x f(t)dt$.

- a) Etudier le sens de variation de G.
- b) Montrer que la représentation graphique Γ de G est l'image de (C_1) par la translation de vecteur $-2\vec{j}$.

EXERCICE N° 3: (5 pts)

Dans le plan orienté dans le sens direct on considére un carré ABCD de c entre O tel que

$$(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2}$$
 [2 π] et I et J sont les milieux respectifs de [AB] et [IO].

Soit S la similitude directe qui transforme A en I et Den A.

- 1) a) Déterminer le rapport et l'angle de S.
 - b) Quelle est l'image du carré DABC par S?
 - c) Déterminer S(B) et en déduire que S(I) = J.
- 2) Soit Ω le centre de S.On pose g = SoS.
 - a) Montrer que g est une homothétie dont on déterminera le rapport.
 - b) Déterminer g(A) et g(D).
 - c) Construire alors Ω .

EXERCICE N° 4: (6 pts)

On pose $I_n = \int_0^1 x^n \sqrt{3+x} dx$ pour tout $n \ge 0$.

- 1) a) Caculer I₀.
 - b) Caculer I₁.
- 2) Démontrer que la suite (I_n) est décroissante.
- 3) a) Montrer que pour tout n appartenant à IN, on a: $\frac{\sqrt{3}}{n+1} \le I_n \le \frac{2}{n+1}$.
 - b) En déduire la limite de la suite (I_n) en $+\infty$.
- 4) a) Démontrer que pour tout nombre x appartenant à l'intervalle [0, 1] on a :

$$0 \le 2 - \sqrt{3 + x} \le \frac{1}{2\sqrt{3}} (1 - x)$$

- b) Calculer $\int_0^1 (1-x)x^n dx$.
- c) En déduire que : $\frac{2}{n+1} \frac{1}{2\sqrt{3}(n+1)(n+2)} \le I_n \le \frac{2}{n+1}$.
- d) Déterminer la limite de la suite (nI_n) n∈IN.